Hugging Face AutoTrain
3 minute read
Hugging Face AutoTrain is a no-code tool for training state-of-the-art models for Natural Language Processing (NLP) tasks, for Computer Vision (CV) tasks, and for Speech tasks and even for Tabular tasks.
Weights & Biases is directly integrated into Hugging Face AutoTrain, providing experiment tracking and config management. It’s as easy as using a single parameter in the CLI command for your experiments

Install prerequisites
Install autotrain-advanced
and wandb
.
To demonstrate these changes, this page fine-tines an LLM on a math dataset to achieve SoTA result in pass@1
on the GSM8k Benchmarks.
Prepare the dataset
Hugging Face AutoTrain expects your CSV custom dataset to have a specific format to work properly.
-
Your training file must contain a
text
column, which the training uses. For best results, thetext
column’s data must conform to the### Human: Question?### Assistant: Answer.
format. Review a great example intimdettmers/openassistant-guanaco
.However, the MetaMathQA dataset includes the columns
query
,response
, andtype
. First, pre-process this dataset. Remove thetype
column and combine the content of thequery
andresponse
columns into a newtext
column in the### Human: Query?### Assistant: Response.
format. Training uses the resulting dataset,rishiraj/guanaco-style-metamath
.
Train using autotrain
You can start training using the autotrain
advanced from the command line or a notebook. Use the --log
argument, or use --log wandb
to log your results to a W&B run.

More Resources
- AutoTrain Advanced now supports Experiment Tracking by Rishiraj Acharya.
- Hugging Face AutoTrain Docs
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.